

PREVINE Campaign: Care that protects, rights that PREVENT - Pressure Injury Prevention Campaign Plan 2025

Campanha PREVINE: Cuidados que protegem, direitos que PREVINEM - Plano de Campanha para Prevenção de Lesões por Pressão 2025

DOI: 10.37111/braspenj.previne-en

Denise Philomene Joseph van Aanholt Adriano Antonio Mehl Amanda Cristina Maria Aparecida Gonçalves Brandão² Andrea Bottoni³ Andrea Fernanda Lopes⁴ Andreia Maria Minutti de Almeida⁵ Clarissa Martins Zambelli⁶ Claudia Satiko Takemura Matsuba⁷ Diana Borges Dock-Nascimento⁸ Fernanda Antunes Ribeiro⁵ Fernanda Ramires Totti¹⁰ Haroldo Falcão Ramos da Cunha¹¹

Jaqueline Almeida Guimarães Barbosa¹² Juliana Tepedino Martins Alves¹³ Julieta Regina Moraes14 Karla Lopes Pereira Gomes¹⁵ Leticia Faria Serpa¹⁶ Letícia Fuganti Campos Molina¹⁷ Lizandra Traldi Mendonça Sanches¹⁸ Mara Rubia de Moura¹¹ Márcia de Souza Antunes²⁰ Maria Carolina Goncalves Dias²¹ Maria do Socorro Lira Paes Batista²² Maria Emília de Souza Fabre²³ Maria Emília Gaspar Ferreira Del Cistia²⁴ Maria Isabel Toulson Davisson Correia²⁵ Maria Rita Novaes² Mariana Fernandes Cremasco de Souza²⁷ Nara Lucia Andrade Lopes²⁸ Paula Pexe-Machado²⁹ Priscila Barsanti³⁰ Ricardo Ferrer³¹ Ricardo Tadeu Prete³² Rogério Dib³³ Silvia Maria Fraga Piovacari³⁴ Simone Araujo³⁵ Suely Itsuko Ciosak³⁶ Liane Brescovici Nunes de Matos³⁷

- Médico Chefe do serviço ambulatorial de feridas de difícil cicatrização e lesões neuropáticas no Hospital Santa Casa de Curitiba, Curitiba, PR, Brasil.
- Enfermeira estomaterapeuta do Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
- 2. 3. 4. 5.
- Diretor Técnico da Funzionali e Docente da Universidade de Mogi das Cruzes, São Paulo, SP, Brasil.
 Hospital Getúlio Vargas e Clínica Álvaro Regino, Teresina, PI, Brasil.
 Especialista de qualidade e segurança da Santa Casa da Misericórdia de São Paulo, São Paulo, SP, Brasil.
 Nutrologia na Rede Mater Dei de Saúde, Belo Horizonte, MG, Brasil.

- Nutrologia na Rede Mater Dei de Saúde, Belo Horizonte, MG, Brasil.

 Enfermeira no Conselho Regional de Enfermagem de São Paulo e na Faculdade Paulista de Ciências da Saúde (FPCS-SPDM), São Paulo, SP, Brasil.

 Professora associada IV da Faculdade de Nutrição e orientadora do Programa de Pós Graduação em Ciências da Saúde da Faculdade de Medicina da na Universidade Federal de Mato Grosso, Cuiabá, MT, Brasil.

 Especialista em Terapia Nutricional do Einstein Hospital Israelita, São Paulo, SP, Brasil.

 Enfermeiro de qualidade e segurança do Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP, Brasil.

 Médico do Hospital Central da Polícia Militar do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.

 Docente do curso de Enfermagem da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

 Médica Hospital Sírio-Libanês e parte da Nutrologia da NUTEP, São Paulo, SP, Brasil.

 Nutricionista Sênior da Equipe Multiprofissional de Terapia Nutricional do Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.

 Gerente de educação corporativa do Hospital Santa Rita, São Paulo, SP, Brasil.

 Preceptora da Residência em Endocrinologia na Faculdade Evangélica Mackenzie do Paraná, Curitiba, PR, Brasil.

 Nutricionista e consultora científica RG Think Food, São Paulo, SP, Brasi.

 Enfermeira Presidente da Sociedade Brasileira de Enfermagem em Feridas e Estética, Rio de Janeiro, RJ, Brasil. 6. 7. 8.

- Enfermeira Presidente da Sociedade Brasileira de Énfermagem em Feridas e Estética, Rio de Janeiro, RJ, Brasil Farmacêutica da Comissão de Terapia Nutricional do Hospital Universitário Antônio Pedro, Niterói, RJ, Brasil.

 Nutricionista chefe da Divisão de Nutrição e Dietética do Instituto Central do Hospital das Clínicas da FMUSP, Coordenadora Administrativa da Equipe Multidisciplinar de Terapia Nutricional do Instituto Central do Hospital das Cínicas da Faculdade de Medicina da Universidade de São Paulo, Mestre em Nutrição Humana pela Universidade de São Paulo, São Paulo, SP, Brasil.

 Nutricionista e Coordenadora Administrativa da Equipe Multidisciplinar de Terapia Nutricional da Santa Casa da Misericórdia de Maceió, Maceió, AL, Brasil.

 Nutricionista de Equipe de Cirurgia Bariátrica da Digestiva, Florianópolis, SC, Brasil.

 Enfermeira especialista estomaterapeuta no Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.

 Médica da ETERNA e Rede Mater Dei e Professora Titular de Cirurgia na Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

 Farmacêutica da Escola de Saúde Pública do Distrito Federal e Secretaria de Saúde do Distrito Federal, Brasília, DF, Brasil.

 Enfermeira e consultora de Práticas Assistenciais do Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.

 Nutricionista e Coordenadora Administrativa da Equipe Multidisciplinar de Terapia Nutricional do Hospital Copa D'Or, Mestre em Nutrição Clínica pela Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.

 Professora e Nutricionista Clínica da UNIVAG Centro Universitário, Cuiabá, MT, Brasil.

- Professora e Nutricionista Clínica da UNIVAG Centro Universitário, Cuiabá, MT, Brasil.
- Professora e Nutricionista Clínica da UNIVAG Centro Universitário, Cuiabá, MT, Brasil.

 Gerente de Nutricão do Hospital Israelita Albert Einstein e Coordenadora do Curso de Pós-Graduação em Terapia Nutricional Pacientes Graves da Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, SP, Brasil.

 Enfermeiro Líder de Educação em Práticas Assistenciais Rede D'Or São Luiz e Docente na Universidade Santo Amaro, São Paulo, SP, Brasil.

 Enfermeiro Coordenador Técnico Administrativo da Equipe Multiprofissional de Terapia Nutricional do Hospital do Coração, São Paulo, SP, Brasil.

 Fisioterapeuta referência do Departamento de Pacientes Graves e Coordenador da Pós Graduação de Fisiologia do Exercício do Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, SP, Brasil.

 Coordenadora de Nutrição Clínica do Hospital Israelita Albert Einstein e Coordenadora do Curso de Pós-Graduação em Nutrição Hospitalar da Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil.

 Enfermeira estomoterapeuta no Hospital São Vicente de Paulo, Passo Fundo, RS, Brasil.

 Enfermeira e Professora Associada 3 da Escola de Enfermagem da Universidade de São Paulo, SP, Brasil.

 Médica nutróloga pelo A. C. Camargo Câncer Center, São Paulo, SP, Brasil.

Keywords:

Pressure ulcer. Injury severity score. Wound healing. Nutricional status.

Unitermos:

Lesão por pressão. Escala de gravidade do ferimento. Cicatrização. Estado nutricional.

Endereço para correspondência:

Denise Philomene Joseph van Aanholt Rua Candido Jose da Rocha 206 – Campeche, Florianópolis, SC, Brasil – CEP: 88063-467

E-mail: deaanholt@gmail.com

Submission:

September 1st, 2025

Accepted for publication: September 30th, 2025

Date of publication: November 13th, 2025

ABSTRACT

This document is part of the CUIDADOS campaign and consolidates the discussions and strategies for the "Campaign for the Prevention and Treatment of Pressure Injuries: Care that protects, rights that PREVENT", in 2025, promoted by the Brazilian Society of Parenteral and Enteral Nutrition (SBNPE/BRASPEN). The focus is to provide a comprehensive plan that highlights the steps, strategies, and approaches grounded in the seven "PREVINE" (PREVENT in Portuguese) principles to ensure campaign success.

RESUMO

Este documento é parte da campanha CUIDADOS e consolida as discussões e estratégias para a "Campanha de Prevenção e Tratamento de Lesões por Pressão: Cuidados que protegem, direitos que PREVINEM", em 2025, promovida pela Sociedade Brasileira de Nutrição Parenteral e Enteral (SBNPE/BRASPEN). O foco é fornecer plano abrangente que destaque as etapas, estratégias e abordagens fundamentadas nos sete princípios "PREVINE" para garantir o sucesso da campanha.

INTRODUCTION

Pressure injury (PI) is considered the most frequent adverse event found in hospitalized patients and represents a serious public health problem in Brazil and worldwide. The damage affects not only the injured person, with considerable worsening of complications and quality of life, but also represents an important cost increase for the health sector^{1,2}.

Pls are damaged areas of the skin or underlying soft tissues, usually over a bony prominence, through long-term pressure or pressure in combination with shear. It is estimated that one in 10 patients admitted to the hospital have Pl¹.

The skin, as the first protective barrier of the human body, is exposed to constant aggressions from external agents. When healthy and intact, this protects the body against pathogens, prevents fluid loss and regulates body temperature³.

The Brazilian National Health Surveillance Agency (Anvisa) published the 29th edition of the Patient Safety and Quality in Health Services Bulletin, presenting all incidents related to care that occurred and were reported in Brazilian territory between 2014 and 2022, with a total of 1,100,352 incidents notified. This leads us to an average of 335 notifications every 24 hours. Analyzing this bulletin, there is exponential growth over these years, reaching a maximum of 30 thousand notifications in one month during the year 2022. It is noted in this bulletin that, from 2014 to 2019, PI was the third most reported incident. From June 2019 to December 2022, the PI occupied second place with more than 150 thousand notifications throughout Brazil. Also, 26,735 "never events" (events that, due to the impact and risk to the patient's life, should never occur in health services) were reported, consisting mostly of Pls, with a total of 25,076 (93.8%) notifications, 72.2% of which were stage 3 and 21.6% stage 44.

The PREVINE campaign aims not only to treat PL, but warn about preventive care, since PL remains at high incidence in hospital units. Because PI is painful it requires specific care procedures, with eventual difficulty in curing it in a short time. In addition, they have a negative impact on the clinical and nutritional evolution and quality of life of the individual, with an increase in the number of days of hospitalization and mortality⁵⁻⁷.

To facilitate the assimilation of the concepts, a mnemonic method was developed with the word "PREVINE", in which each letter proposes steps that help in the identification of risk, evaluation, treatment and follow-up of pressure ulcers, as shown in Board 1.

The SEVEN steps to combat PIs will be detailed in the topics below:

1. Prioritize risk assessment for Pressure Injuries at patient admission, for early diagnosis and care

It is known that the development of PI is of multifactorial origin and includes intrinsic factors (that is, inherent to the patients), such as nutritional status, mobility, incontinence and extrinsic factors (related to the environment and exposures that the patient presents throughout his hospitalization), such as the use of medications and invasive devices. Identifying the risk factors for the occurrence of PIs at admission is of fundamental importance for the implementation of preventive actions as early as possible in susceptible patients, aiming to avoid the development of injuries⁸. Currently, there are different methods of risk assessment of PI, based on literature review, expert opinion, or adaptation of existing tools. The Braden Scale (1987) is one of the best known and

Quadro 1 - Mnemonic method with 7 steps to prevent pressure injury (PI).

- P Prioritize risk assessment for PIs at patient admission, for early diagnosis and care.
- R Reevaluate and assess risk areas for immediate care action and classify injuries for individualized treatment.
- **E** Exclude excessive tension and promote pressure relief with personalized care.
- V uch for permanent attention to the skin, with adjustment of preventive care measures and appropriate treatment.
- I Individualize the care and nutritional strategy for each patient and user of the health networks, following and keeping protocols up to date.
- N Notify skin changes and communicate clearly to the team. This action is part of integrated care.
- E fold all key healthcare stakeholders, caregivers, family members, and patients in the integrated approach to preventive care and individualized treatment of PI.

Source: prepared by the authors.

most used in Brazilian health services, and has been validated in Brazil. The Norton Scale (1962) and the Waterlow Score (1985) are also used. The Intensive Care Pressure Injury Risk Assessment Scale (EVARUCI) is specifically for the assessment of patients admitted to the Intensive Care Unit (ICU), the Risk Assessment Scale for the Development of Injuries Resulting from Surgical Positioning (ELPO), the Munro Scale for patients in the Operating Room, and the Braden Q Scale for pediatric patients⁹⁻¹².

These tools do not necessarily include the evaluation of all the factors that may contribute to the occurrence of PI⁸, which among the most prevalent are:

- Reduction in mobility and physical activity they favor increased pressure on bone prominences, especially in bedridden patients with spinal cord injury^{8,13};
- Presence of edema or conditions that alter tissue perfusion and oxygenation, such as diabetes mellitus, vascular disease, and smoking¹³⁻¹⁵;
- Malnutrition, obesity, and sarcopenia^{8,16};
- Increased skin moisture, commonly observed in patients with urinary and fecal incontinence¹⁵;
- High body temperature¹⁶;
- Deficit in the sensory perception of the skin¹⁶;
- Laboratory abnormalities, such as a drop in hemoglobin with a consequent reduction in tissue oxygenation, an increase in the inflammatory marker C-Reactive Protein (CRP), leukopenia, and hypoalbuminemia, causing edema and changes in tissue perfusion¹⁷;
- Presence of previous diseases, chronic wounds, use of medications, infection, and altered level of consciousness¹⁸⁻²¹;
- High surgical time and immobility in the perioperative period⁸;
- Disease severity critically ill patients, with long ICU stays, mechanical ventilation, use of vasopressors^{10,18,19,22,23};

- Patients in palliative care⁸;
- Patients in prolonged transport, for example, in ambulances⁸;
- Neonates and children, due to skin immaturity with repercussions on tissue perfusion⁸;
- Use of medical devices, most commonly devices for ventilatory support⁸.

Patients considered to be at high risk for PI include those who present multiple factors that affect mechanical conditions such as points of increased pressure on the skin, friction or shear, and factors related to the morphological and physiological characteristics of the tissues, as is the case of the elderly. Thus, care for the elderly requires a different look. These have higher risks due to reduced skin thickness and elasticity, changes in blood circulation and tissue oxygenation, reduced mobility, and the presence of comorbidities that can interfere with patients' perception of lesions, and even advanced age^{8,14,16,23,24}.

Recent research has used artificial intelligence (AI) to assess risk for PI, through the development of predictive models created from databases and machine learning. Al techniques show promise in automatically and dynamically identifying patients at risk of developing PI²⁵⁻²⁷.

Practical approach:

- Perform interprofessional evaluation of the patient at admission, listing all risk factors for the development of PI;
- It is suggested the use of a risk assessment instrument for PI validated for the population of interest;
- Reassess the presence of risk factors on a daily basis, considering changes in the clinical picture and worsening of the underlying disease.

Board 2 - Risk factors for the development of pressure injuries (Pls).

Risk factor	Exposure to mechanical damage	Individual susceptibility and tolerance	
Activity and mobility limitation	X		
Current skin condition		X	
Perfusion, circulation and tissue oxygenation		X	
Nutritional indicators		X	
Skin moisture	X	X	
Body temperature		X	
Advanced age	X	X	
Sensory perception limitation	X		
Blood markers		X	
General condition and mental health	X	X	
Risk factors for specific populations			
Surgical patients	X	X	
Critical patients	X	X	
Neonates and children	X	X	

Fonte: European Pressure Ulcer Advisory Panel: international guideline8.

Board 2 presents the categorization of the risk factors that favor the appearance of PI.

Prevention of PI is a goal of patient safety and the responsibility of all interprofessional teams at all levels of health care, and the occurrence is an adverse event, most of the time, avoidable. The use of risk assessment instruments, combined with knowledge and physical examination of the skin performed by health professionals, are essential for directing preventive measures. The importance of directing investments in material and human resources to consolidate a culture of harm prevention and patient safety should be emphasized²⁸.

2. Reevaluate assiduously assess risk areas for immediate care action and classify injuries for individualized treatment

Assiduously assessing skin integrity and risk areas for the development of PI is an essential action in the prevention, classification, diagnosis, and treatment of this lesion. The condition of the skin can serve as an indicator of early signs of damage, offering opportunities to identify and intervene early when skin changes are identified, especially PIs⁸.

The physical examination performed by the nurse should include a careful evaluation of the skin and the risk

classification for PI in order to prescribe appropriate preventive care. The nursing diagnoses "Risk of pressure injury in adults" and "Risk of pressure injury in children", present in the North American Nursing Diagnosis Association (NANDA) taxonomy, corroborate the importance of this assessment in the context of nursing care²⁹.

This continuous inspection of skin integrity, which is the responsibility of the nursing team, enables the identification of alterations or the presence of lesions, a careful evaluation for the realization of a care plan for prevention, as well as a therapeutic plan during Pl.

Skin assessment and risk areas

In a cross-sectional, descriptive, and analytical study conducted in two hospital institutions by Mendonça et al. 30 , which included 104 participants, it was evident that skin inspection was prescribed by only 18.3% of the nurses, which was statistically associated with the absence of PI (p<0.001) 30 .

Intact skin also deserves care, such as hydration and skin water balance, fundamental factors to ensure the integrity and function of the tissue. Among the main functions of hydration, we can highlight skin barrier repair, appearance

maintenance and the maintenance of the lipid barrier's ability to attract, maintain and redistribute water. There are several inputs available that can be used to combat skin dehydration, such as those based on alpha-hydroxy acids, glycerin, urea, propylene glycol and lipids⁸.

Findings such as dryness, excess moisture, decreased stratum corneum, or inflammation can weaken the skin's barrier function and increase susceptibility to PI⁸.

Practical approach:

A complete evaluation of the skin, by means of a physical examination, should be performed upon admission to the health service and periodically, especially if there is a change in the patient's clinical condition. It is important to identify any change that impacts a decline in the risk score, following the steps below, as recommended by ANVISA²⁸:

- Daily and complete evaluation of the skin in the regions of bony prominences (sacral region, calcaneus, trochanters, occipital, knees and elbows) by means of physical examination. At least twice a day, regions subjected to pressure by health devices, such as catheters, tubes, drains, and immobilization devices should be evaluated;
- Attention to devices, which must have a well-defined indication for use, adequate sizes and quality raw material, preferably equipped with specific manufacturing measures to prevent PI;
- Careful and specific evaluation for black skin, taking into account the plurality of skin colors associated with melanin levels, since the initial erythema (stage 1 PI) may not be so easily identified. In these cases, trigger additional measures such as evaluating changes in sensitivity, temperature or consistency (tightening) of the skin.

Other points of attention to skin inspection:

- Attention to the presence of edema, especially in patients in the ICU, with impaired mobility, infusion of large volumes of fluids, and organic dysfunctions. Mendonça et al.³⁰ shows that edema and the occurrence of PI had a significant association (p=0.012);
- Evaluation of tissue perfusion is necessary, as deficient perfusion can be an aggravating factor affecting PI healing⁸;
- Ensure that comprehensive skin assessment is an integral part of the PI risk screening policy and should be implemented in all health institutions^{31,32};
- Perform a complete skin assessment in patients at risk of developing PI within a maximum period of eight hours after admission and as an integral part of all risk assessments⁸;

- Increase the frequency of skin assessments in response to any deterioration in general condition³;
- Inspect the skin under and around medical devices at least twice a day in order to identify signs of PI in the surrounding tissue⁸;
- Perform more frequent skin evaluations (more than twice a day) in devices that interface directly with the skin, especially in those individuals susceptible to fluid changes or in individuals with signs of localized/generalized edema⁸;
- Reassess continuously, based on the clinical context and the individual's risk potential. Thus, those patients at moderate to high risk for PI should be reassessed every 24 hours. Patients at low risk for PI can be reassessed every 72 hours, or reassessed immediately if there is a change in clinical condition³³;
- Perform an evaluation before the patient is transferred from one unit or sector, and before being discharged⁸.

Board 3 presents a tool for assessing the general conditions of the skin in detail, and with guidelines for professionals related to the questions that should be asked. They include guidelines for the thorough inspection of the skin, in addition to a reference of the expected ideal, with a focus on the prevention of Pl.

Pressure injury classification

As well as the assessment of the skin and the risk of developing pressure ulcers, the classification of PI is essential for establishing the appropriate therapeutic approach. PI can be classified according to etiology, tissue involvement, healing time, level of microbiological burden, tissue characteristics, among other factors⁸.

The concepts, nomenclature, and classification of the stages of Pls were changed by the National Pressure Ulcer Advisory Panel in 2016 and maintained in the publication of the same entity in 2019. The modification of the proposed nomenclature was validated for the Portuguese language with the recognition of the Brazilian Association of Stomatherapy (SOBEST) and the Brazilian Society of Dermatology Nursing (SOBENDE) in 2016. This same nomenclature is maintained in the publication of "Patient Safety Practices in Health Services: prevention of pressure injuries" of Anvisa^{8,28,35,36}.

Practical approach:

Due to the extreme relevance of the classification of PL for clinical practice for the appropriate selection of the

Board 3 - Assessment of general skin conditions related to the risk of developing pressure injury (PI).

	С	E	Т	U	В	С
	Coloring	Edema	Temperature	Moisture	Barrier	Consistency
	Is this skin color normal for this patient?	Is the edema the result of an inflammatory process?	Are there areas of localized heat on the skin on palpation?	Is skin moisture excessive?	Are there areas of skin barrier breakage?	Is the skin too thin?
Questions	Are there areas of redness that, when compressed, do not turn white?	Is the edema related to the circulatory system?	Are there cold areas, compatible with areas of low vascularization?	Is there contact with dirt, exudations, secretions, urine or feces?	Are there modifiable factors such as friction or shear?	Is there noticeable edema?
	How are the perfusion and oxygenation?	Is the edema causing interstitial pressure?		Is the skin getting macerated?		Is the skin macerated over?
Guidelines	redness that do not turn white when compressed is a predictor of the development of stage 2 Pls. Evaluation by inspection and local pressure for 3 seconds proved to be an effective evaluation instrument	cells. This results in inflammatory edema, that further increases mecha- nical loads on cells	Trained professionals can identify up to 1.0-3.0°C difference in temperature on palpation. More recent studies show that the use of infrared thermometers can help the manual evaluation.	Humidity increases the effects of pressure under the skin, predisposing it to necrosis and maceration and making it more vulnerable to injury. In addition, it causes the adhesion of bed linen and clothing to the skin, enhancing the action of shear and friction. The presence of urine or feces changes the pH of the skin, in addition to leaving it exposed to substances, such as ammonia. This contributes to the breakdown of the skin barrier, favoring colonization by the microbiota (mainly bacteria) and predisposing to infections.	should be avoided with the correct positioning and mobi- lization of patients in bed. It requires care with the patient's movement, protection of sensitive areas,	pressure, in addition to the risk factors. The presence of ede- ma or macerations requires additional
Expected ideal	Homogeneous color	Absence of edema	Temperature homogeneous along the body	Dry and clean skin	Intact skin	Firm skin

Source: elaborated by the authors, based on NUPAP8; Holloway & Jones34.

therapy to be instituted (both in treatment and prevention), it is suggested to use the classification proposed in Board 4.

Finally, it is worth noting that the following stages of injury are considered "never events" related to PIs and subject to

notification to the National Health Surveillance System by the Patient Safety Centers of health services²⁸:

- Stage 3 PI;
- Stage 4 PI;
- Unclassifiable PI.

Board 4 - Classification of pressure injuries (Pls).

Injury Definition
Classification

Stage 1 PI

Intact skin with a localized area of erythema that does not whiten and may look different in dark-colored skin. Presence of erythema that whitens or changes in sensitivity, temperature, or consistency (hardening) may precede visual changes. Changes in color do not include purple or brown discoloration, as these may indicate deep tissue damage²⁸.

Stage 2 PI

Partial thickness skin loss with exposure of the dermis. The wound bed is viable, pink or red in color, moist, and may also present as an intact (filled with serous exudate) or ruptured blister. Adipose tissue and deep tissues are not visible. Granulation tissue, slough and eschar are not present. These lesions usually result from inadequate microclimate and skin shear in the pelvis region and calcaneus. This stage should not be used to describe moisture-associated skin lesions, including incontinence-associated dermatitis (IAD), intertriginous dermatitis, skin lesions associated with medical adhesives, or traumatic wounds (friction injuries, burns, abrasions)²⁸.

Continuation Board 4 - Classification of pressure injuries (Pls).

Injury Classification Definition

Stage 3 PI

Full-thickness skin loss, in which fat is visible, and often granulation tissue and epibole (lesion with curled edges) are present. Slough or eschar may be visible. The depth of tissue damage varies according to the anatomical location. Areas with significant adiposity may develop deep lesions. Detachment and tunneling may occur. There is no fascia, muscle, tendon, ligament, cartilage, or bone exposure. When slough or eschar impairs the identification of the extent of tissue loss, it should be classified as unclassifiable Pl²⁸.

Stage 4 PI

Full-thickness skin loss and tissue loss with direct exposure or palpation of fascia, muscle, tendon, ligament, cartilage, or bone. Slough or eschar may be visible. Epibole (lesion with curled edges), detachment, or tunnels often occur. The depth varies according to the anatomical location. When slough or eschar impairs the identification of the extent of tissue loss, it should be classified as unclassifiable Pl²⁸.

Continuation Board 4 - Classification of pressure injuries (Pls).

Injury Classification Definition

Unclassifiable PI Full-thickness skin loss and tissue loss in which the extent of the damage cannot be confirmed because it is obscured by sloughing or bedsores. When the slough or eschar is removed, stage 3 or stage 4 PI will be apparent²⁸.

Deep tissue PI

Intact or unintact skin with a localized, persistent area of dark red, brown, or purple discoloration that does not whiten or epidermal separation that shows a lesion with a darkened bed or a blister with bloody exudate. Pain and change in temperature often precede changes in skin color. Discoloration may present differently in people with darker skin. This injury results from intense or prolonged pressure and shear at the bone-muscle interface. The wound may evolve rapidly and reveal the current extent of tissue injury or resolve without tissue loss. When necrotic tissue, subcutaneous tissue, granulation tissue, fascia, muscle, or other underlying structures are visible, this indicates PI with total tissue loss (unclassifiable PI, stage 3 or stage 4). The category deep tissue PI should not be used to describe vascular, traumatic, neuropathic, or dermatological conditions²⁸.

Continuation Board 4 - Classification of pressure injuries (Pls).

Injury Classification

Definition

Medical device-related PI This terminology describes the etiology of the injury and results from the use of devices created and applied for diagnostic and therapeutic purposes. The resulting PI usually presents the pattern or shape of the device. This injury should be categorized using the PI classification system²⁸.

PI in mucous membranes

Found when there is a history of medical device use at the site of the damage. Due to the anatomy of the tissue, these lesions cannot be categorized²⁸.

Source: prepared by the authors.

3. Exclude excessive tension and promote pressure relief with personalized care

The need to promote patient mobilization for prevention and aid in the treatment of PI is very well established in clinical practice. Data from the literature have demonstrated the importance of implementing protocols, such as personalized and systematic repositioning in bed every two hours, pressure relief maneuvers when the patient is seated, adequate hydration and hygiene of the skin, protection of susceptible points that are usually those with greater bone protrusion or places where injuries have already occurred in the past³⁷. These points may be located in the lower limbs (trochanter, malleolus, and calcaneus), in the pelvis, and, although less frequent, in the upper limbs (elbows, shoulders, and shoulder blades), so that all of them require continuous monitoring.

It is known that mobilization and repositioning aim to redistribute pressure on the skin, especially on bone prominences, maintaining adequate blood circulation and reducing the magnitude of the force, in addition to being considered a maneuver for tissue vitality³⁸.

Some medical devices may increase the risk of the patient developing PI, as they may remain in contact with the skin for prolonged periods or even due to the tissue fragility already existing in the region, increasing the need for frequent evaluations³⁶. Non-invasive ventilation and oxygen therapy devices, such as the bilevel positive airway pressure (BIPAP), continuous positive airway pressure (CPAP) and high flow nasal catheter are devices that can be used daily, increasing the pressure on the patient's skin. The use of this equipment may be indicated for the treatment of sleep apnea, or for long periods in cases of hospitalization for various causes. Thus, it is necessary to periodically evaluate the pressure points that masks and catheters can generate on the patients' faces³⁹.

Practical approach:

The main recommendations regarding bed repositioning are $^{37,40.43}$:

- Initially evaluate the skin in order to direct the frequency of repositioning in bed, considering: activity level, mobility, clinical condition, skin condition, comfort and pain;
- Regularly inspect the skin and bony prominences during repositioning, with a record in the medical record at least once a day;
- Encourage self-care for those who manage to reposition themselves. Including caregivers and family members in this process is important in clinical practice and seems to result in better adherence to care;

- Record the frequency of repositioning in bed, as well as the position and angulation;
- Prioritize decubitus at 30° in the semi-fowler position and maximum rotation of 30° to the sides (alternating right, left and dorsal sides);
- Restrict the time in a sitting position without pressure relief, as the weight of the body increases the pressure of the ischial tuberosities. In clinical practice, actions are adopted to mitigate pressure points when in an armchair/ chair, such as remaining for 1 hour with the lower limbs elevated and 1 hour with the lower limbs resting on the floor, not exceeding the maximum time of 2 hours;
- Check, after positioning, the pressure points on devices such as probes and drains. The use of preventive dressings for pressure relief is recommended in cases that are difficult to control;
- Intersperse BIPAP/CPAP masks and use preventive dressings to ease the pressure load imposed on the skin;
- Regularly assess discomfort and pain. When these happen, reconsider the frequency and method of repositioning;
- Assess the need for pre-mobilization analgesia at least 20 to 30 minutes in advance, in cases of severe pain;
- Mobilize patients with hemodynamic instability, as long as they recover their parameters 10 to 20 minutes after repositioning in bed (adjustment of orthostatic pressure and baseline). In selected cases, mobilize the patient gradually to 15° in the first minute and if tolerance reaches 30°;
- Use pillows and cushions to support the arms and legs.
 This procedure has good results in critically ill patients, minimizing shear;
- Use mechanical lifts and transfer sheets to reduce the risk of shear;
- Apply preventive dressings to areas of greater pressure points such as bony prominences, frequently evaluating the facial region, when the patient is prone;
- Prioritize comfort in patients in end-of-life care;
- Contraindicate ring- or ring-shaped assistive devices (cushions or circular seats), as they create areas of high pressure with a risk of tissue damage. This also applies to synthetic sheepskin pads, intravenous fluid sacs, or waterfilled gloves to elevate the calcaneus.

4 – Vouch for permanent attention to the skin, with adjustment of preventive care measures and appropriate treatment

Interdisciplinary collaborative practices contribute to the reduction of adverse events. Therefore, with regard to the prevention and treatment of PI, there is a certain autonomy in the actions performed by the nursing team. However, there are times when complementarity with the other professionals of the health team is necessary and, in this context, the nursing professional becomes the interlocutor between the members of the multiprofessional team and the patients⁴⁴.

The assessment of the risk for the development of PI is the first step for prevention and should be performed at admission to the health service, through the application of validated scales, as previously mentioned. When identifying people at risk, nurses need human and material resources (HR and MR) to implement care that requires continuity, such as hygiene, daily skin inspection, hydration, or constant diaper changes⁴⁵.

The Brazilian Institute for Patient Safety has emphasized that risk assessment, skin assessment, early treatment, mechanical overload, use of support surfaces, and education for professionals, families, and patients are the guidelines for the prevention of these injuries⁴⁶.

The most effective strategy in the prevention of PI is the implementation of care packages that involve all professionals in the care team⁴⁷.

A bundle is considered a structured and conceptualized strategy among care aimed at prevention. It is a practical and effective instrument, consisting of proven and safe conducts. The measures proposed for structuring this instrument act directly on the most harmful factors of health problems. In addition, the bundle can be a powerful stimulus for teamwork, bringing standardization to the service and offering the best care for the patient⁴⁸.

Monitoring to prevent and effectively treat PI should include routine activities, with bedside inspection and structuring of protocols that favor the recognition of the population most susceptible to PI⁸.

The continuing education of health professionals favors the effectiveness of care. A recent systematic review and meta-analysis showed that education and training programs in PL can improve the knowledge and clinical judgment of nurses in the prevention and treatment of these injuries, and should be encouraged in health institutions ⁴⁹.

Practical approach:

Permanent attention focused on risk stratification for the development of PI, preventive measures, and treatment of lesions are essential for the elaboration of the care plan in an individualized way.

Predictive scales are not complete in terms of the inclusion of all risk factors. For this reason, continuous, and individualized search should be considered in monitoring activities⁵⁰.

As a suggestion, a flowchart protocol (Figure 1) is presented for monitoring patients at risk of developing PL or who already have some lesion:

In 2020, SBNPE/BRASPEN proposed 4 measures to monitor Nutritional Risk Factors to prevent Pl⁵⁰:

- a) Nutritional risk tracking;
- b) Dysphagia follow-up and oral acceptance (estimation of the composition of the diets and with the approximate recording using food recall);
- c) Monitoring of caloric-protein intake, control of infused and prescribed volume, in patients with enteral or parenteral nutrition;
- d) Use and preventive replacement of micronutrients according to clinical need.

Considering risk stratification, it is proposed to develop care plans with prevention strategies with planned conducts according to the recommendations with level of evidence⁸, as exemplified in Figure 2.

If patients develop PI, some other type of skin lesion, or are already hospitalized with a wound, topical management should take into account not only the PI stage but also the other etiologies and type of tissue present in the bed.

The selection of the most appropriate dressing for the prevention of Pls should be made based on clinical evaluation. The cost-benefit of coverage should be taken into account, including direct and indirect costs for the health system and for the patient (Figure 3).

5- Individualize the care and nutritional strategy for each patient and user of the health networks, following and keeping the protocols up to date.

Nutritional screening and assessment

Processes that allow prevention of the appearance of PI should be part of the institutional protocols of the various health sectors. In this sense, carrying out a nutritional screening, followed by nutritional assessment, is essential.

Malnutrition, the presence of involuntary weight loss, and inadequate food intake are three of the many independent nutritional vulnerabilities that increase the risk of developing PI or interfere with the wound healing process⁵¹.

It has already been well proven by the literature, both in multicenter studies and in meta-analysis, that people at risk for malnutrition or already malnourished are more likely to present PI. These results are worse when the population is elderly. The tool generally used in studies is the Nutritional Risk Screening 2002 (NRS 2002) for adults and the Malnutrition Universal Screening Tool (MUST) and Mini Nutrition

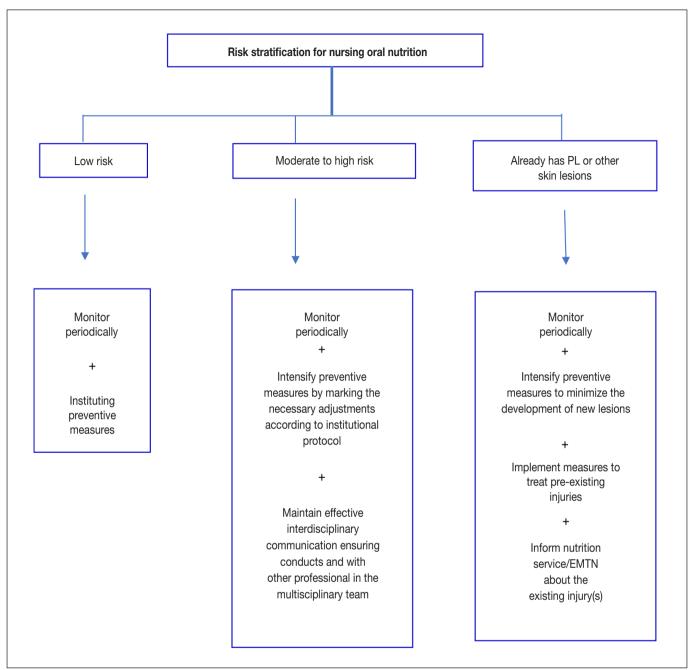


Figure 1 - Flowchart for monitoring risk for pressure injury (PI). Source: elaborated by the authors.

Assessment (MAN) for the elderly, with the presence of nutritional risk ranging from 36 to 76% of patients with PI detected^{8,52-56}.

Early nutritional screening reduces PI incidence rates by up to 50%, allows early planning by the multidisciplinary health team, greater success in PI healing, reduced hospital stay, and reducing costs⁵⁷.

Screening should be performed with a simple, valid, and reliable tool within 24 to 48 hours of hospital admission, repeated 7 to 10 days whenever risk is not found. In

case of nutritional risk, nutritional assessment should be performed⁵⁸⁻⁶⁰. Some validated tools, such as MAN, demonstrate integrity of the skin in their preparation, as well as include risk factors for Pl^{58,61}. The same occurs with the Braden scale, used to assess the risk of Pl, which considers the presence of nutritional risk in its score¹⁰. It is worth mentioning that in other environments of the health sector, this dynamic must be maintained.

Nutritional assessment should include dietary history, basic anthropometric measurements (weight, height, body Low risk for PI

- Inspect and evaluate the skin;
- Perform or encourage repositioning in bed every 2 hours;
- Use cushions to favor comfortable positioning in bed;
- * Monitor skin moisture;
- Consider for skin hygiene the use of syndets - soaps formulated with mild detergents and with a pH closer to that of the skin (5.5);
- Promote skin hydration pay attention to not massaging the areas of bony prominences;
- Stimulate and monitor adequate nutritional intake;
- Mobilize the patient by the mobile tracing, instead of pulling it by the limbs, causing friction in the bed;
- Fix medical devices securely and comfortably.

Moderate risk for PI

- Inspect and evaluate the skin;
- Perform bed repositioning every 2 hours or intensify every 1 hour;
- Use cushions to favor comfortable positioning in bed;
- Prevent excessive skin moisture;
- Consider for skin hygiene the use of syndets - soaps formulated with mild detergents and with a pH closer to that of the skin (5.5);
- Promote skin hydration with barrier cream - attention not to massage the areas of bony prominences;
- Stimulate and monitor adequate nutritional intake;
- Mobilize the patient by the mobile tracing, instead of pulling it by the limb, causing friction in the bed;
- Fix medical devices securely and comfortably;
- Install air mattress or memory foam mattress. If these surfaces are not available, consider the use of an egg crate mattress, as long as there is interdisciplinary consensus and implementation of the recommendations of the local Hospital Infection Control Service and institutional protocols:
- Evaluate the need to use head and heel protectors;
- Evaluate the use of incontinence control devices.

High or very high risk for PI

- Inspect and evaluate the skin;
- Perform bed repositioning every 2 hours or intensify every 1 hour;
- Use cushions to favor comfortable positioning in bed;
- Prevent excessive skin moisture;
- Consider for skin hygiene the use of syndets - soaps formulated with mild detergents and with a pH closer to that of the skin (5.5);
- Promote skin hydration with barrier cream - attention not to massage the areas of bony prominences;
- Stimulate and monitor adequate nutritional intake;
- Mobilize the patient by the mobile tracing, instead of pulling it by the limb, causing friction in the bed;
- Fix medical devices securely and comfortably;
- Install air mattress or memory foam mattress. If these surfaces are not available, consider the use of an egg crate mattress as long as there is interdisciplinary consensus and implementation of the recommendations of the local Hospital Infection Control Service and institutional protocols;
- Evaluate the need to use head and heel protectors;
- Evaluate the use of incontinence control devices;
- Protect bony prominences with multilayer polyurethane foams with silicone.

Figure 2 - Care plan according to risk for pressure injury (PI). Source: elaborated by authors.

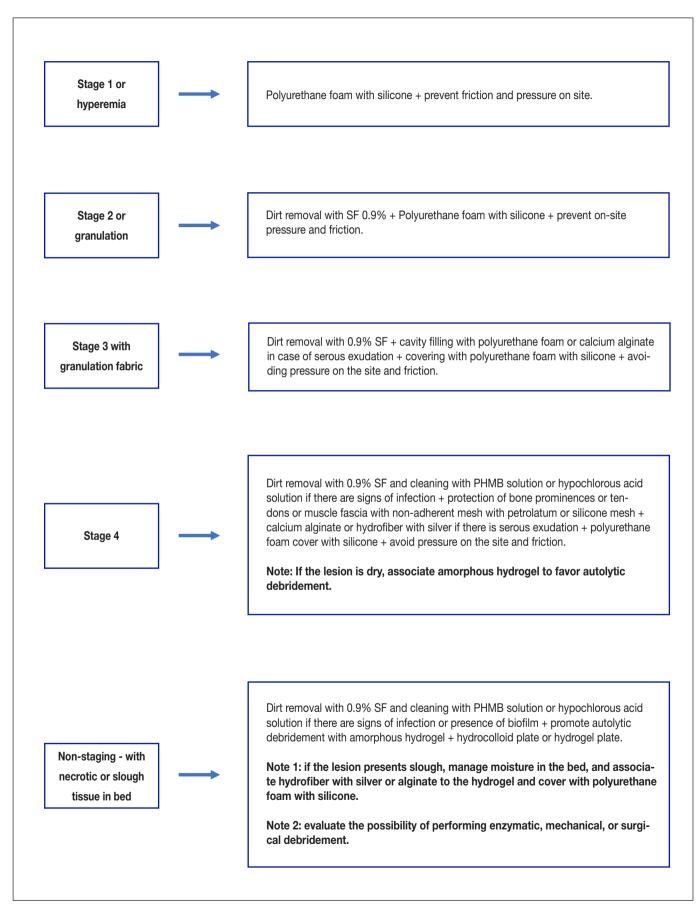


Figure 3 - Care choice for pression injury (PI), according to lesion stage. Source: elaborated by the authors.

mass index), weight loss history, assessment of muscle mass loss, edema, signs of micronutrient deficiency, ability to eat independently, and, when possible, muscle strength tests by dynamometry (handgrip)⁶². The assessment of muscle strength can predict the risk of developing PL during hospitalization and within 30 days after hospital discharge⁶³.

Practical approach:

Perform nutritional screening for all hospitalized patients. For the elderly, MAN tool is suggested. For adults, use NRS 2002 or MUST.

Include in the nutritional assessment: food history, basic anthropometric measurements (weight, height, and body mass index), history of weight loss, evaluation of muscle mass loss, evaluation of peripheral edema, strength assessment using dynamometry (if possible), assessment of micronutrient deficiencies whenever indicated, and assessment of the ability to eat independently.

Set nutritional and hydration goals

Nutritional therapy in patients with PL aims at tissue regeneration, favoring the healing process. Maintaining adequate nutritional status also plays an important role in the prevention of PI, since malnutrition can alter the inflammatory response, collagen synthesis, and wound tensile strength. Thus, it is necessary to identify and correct nutritional imbalances⁷. Nutritional inadequacy is a risk factor for PI, which can impact the development, severity, and prolongation of the healing process. An intervention that includes an individualized nutritional plan is necessary to ensure the adequacy of nutrients and hydration^{8,64,65}.

Adequate calorie supply is essential for phagocytic activity, cell proliferation, and fibroblast function. All macronutrients play an important role in the healing process^{33,66}. Carbohydrate deficiency impairs the synthesis of adenosine triphosphate (ATP), which compromises protein synthesis and angiogenesis⁶⁶. As for proteins, they participate in neovascularization, fibroblast proliferation, collagen synthesis, and leukocyte production and migration in patients with Pl^{65,67,68}. International guidelines show the need to increase protein intake in malnourished individuals at risk or presence of Pl, with the objective of both prevention and treatment of Pl^{69,71}. Fatty acids play an important role in cellular functions, such as the formation of cell membranes⁶⁶.

Calorie intake should be adjusted based on weight change, degree of obesity, or according to the patient's diagnosis and clinical condition. Indirect calorimetry (IC) is the gold standard recommendation for setting the goal of patients' energy requirements. However, due to the difficulties

of implementing it in clinical practice, validated pocket formulas can be used⁸.

Water supply and maintenance of serum proteins at adequate levels are necessary to promote satisfactory healing and may also play a protective role in the development of PI, usually not found in frail elderly, critically ill patients, and end-of-life care⁷²⁻⁷⁴. These factors play an important role in fluid and electrolyte balance, skin turgor, tissue perfusion, and body temperature, in addition to serving as a solvent for vitamins, minerals, glucose, and other nutrients. Dehydration impairs vital circulation functions, decreasing tissue oxygenation. Lower tissue perfusion and oxygenation reduce the rate of tissue metabolism and energy, predisposing to hypoxemia and organ dysfunction that contribute to PI formation^{73,75}. Conditions of hyperthermia, emesis, diarrhea, high sweating or wounds with high exudation, and patients with high protein intake require additional water intake, which must be evaluated individually 8.

Practical approach:

Board 5 suggests pocket rules for calculating energy and protein requirements based on the latest national and international guidelines, as well as the routes of administration of nutritional therapy.

Patients who do not have an intact gastrointestinal tract should receive parenteral nutrition according to established nutritional goals. It is important to remember that malnourished patients or those at nutritional risk, with specific clinical conditions, such as malabsorptive syndromes, burns, or intestinal fistulas, need evaluation to prescribe replacement of vitamins and trace elements in order to favor healing. The need for intravenous or enteral multivitamin replacement should be evaluated (when possible), in addition to specific replacements as needed^{66,79}.

Implement nutritional therapy protocols

Clinical protocols are the best methods to integrate and systematize good patient care practices.

In the context of hospital nutritional therapy, the standardization of routines, the development of protocols, and continuing education are actions that should be promoted by the multidisciplinary team in nutritional therapy (MTNT)⁸⁰.

To build protocols, we must take into account the target population and the profile of the institution involved, aiming to create a standardized model that helps and standardizes the conducts within the institution. Algorithms, medical, dietetic, and nursing prescriptions can be incorporated into

Board 5 - Nutritional requirements and routes of administration of nutritional therapy in the risk of pressure injury (PI) and in the installed PI.

	Risk of PI	PI installed		
Calories (patient stable)	Malnourished or nutritional risk: 30–35 kcal/kg/day ^{8,76}	Malnourished or nutritional risk: 30–35 kcal/kg/day ^{8.76}		
Calories not critically ill*	15 to 20 kcal/kg/day from the 1st to the 3rd day; 25 to 30 kcal/kg/day after the 4th day of patients in recovery ⁷⁷	15 to 20 kcal/kg/day from the 1st to the 3rd day; 25 to 30 kcal/kg/day after the 4th day of patients in recovery ⁷⁷		
Calories in the obese patient*	11-14 kcal/kg/day of actual body weight for patients with a BMI between 30-50 kg/m2 22-25 kcal/kg/day of ideal weight, for patients with BMI >50 kg/m³ 77	11-14 kcal/kg/day of actual body weight for patients with a BMI between 30-50 kg/m2 22-25 kcal/kg/day of ideal weight, for patients with BMI >50 kg/m³ 77		
Proteins	1.25-1.5 g protein/kg/day ⁸ Assess clinical condition of renal patients	1.5g-2.0 g protein/kg/day ^{1,77} Assess clinical condition of renal patients		
Liquids	1ml of fluids/kcal/day, or, 30 ml/kg ⁸	1ml of fluids/kcal/day, or 30 ml/kg ⁸		
Oral nutritional supplement (ONS)	If low feed acceptance (less than 60% of nutritional requirements), assess the need for the introduction of hyperprotein ONS in the context of the diet offered ^{8,78}	Introduce specific oral nutritional supplements for healing (containing specific nutrients: zinc, arginine, carotenoids, vitamins A, C and E) from stage 2,3,4 PI, non-classifiable PI, DTPI** or mucous membrane supplements8		
Enteral nutrition	If food acceptance with ONS is less than 60% of nutritional requirements, enteral nutritional therapy is indicated ^{8,78}	If food acceptance with ONS is less than 60% of nutritional requirements, enteral nutritional therapy is indicated ^{8,76,77}		
Parenteral nutrition	If it is impossible to use the gastrointestinal tract, parenteral nutritional therapy is indicated ^{8,76}	If it is impossible to use the gastrointestinal tract, parenteral nutritional therapy is indicated ^{8,76}		

^{*; =} preferably use indirect calorimetry; ** = DTPI: deep tissue pressure injury. Source: prepared by the authors.

the protocols and allow the expectation of well-defined results. Generally, clinical protocols for local use should consider the relevant medical literature and the guidelines established by national or international professional societies⁸¹.

Health quality indicators are part of the strategic map of institutions. It is worth considering the great challenge due to the variables that contemplate hospital nutritional therapy, highlighting the patient experience, moving on to care, nutritional assessment and conduct, protocols, sanitary aspects, standardizations, and regulations that directly impact the results⁸⁰.

In the context of nutritional therapy, the implementation of protocols seems to significantly improve the quality of the nutritional therapy performed, as well as standardize the conducts of the assistant team with regard to the nutritional therapy adopted. In order to adhere to the protocols, it is necessary that their implementation contemplates the interaction of several factors associated with the type of protocol, implementation process, characteristics of the institution and team profile.

The success of the implementation and execution of a nutritional conduct protocol lies in its simplicity and personalization. For greater effectiveness, they must contemplate the scientific basis of the recommendations offered by guidelines, adaptation to the reality of each service, taking into account clarity, conciseness, format and easy handling⁸¹.

The implementation of protocols for conduct in nutritional therapy can be a relevant alternative for better clinical results. In the scope of nutritional therapy, the concepts of management and quality assurance can be translated by the need for protocols, procedure manuals, indicators and audits in compliance with routines⁸². According to a study⁸ that investigated the use of a nutritional protocol for patients with stage 2 or 3 Pl, nutritional assessment was associated with improved healing of Pls.

Practical approach:

A suggestion for protocols in flowchart format is presented, as can be seen in Figure 4 below:

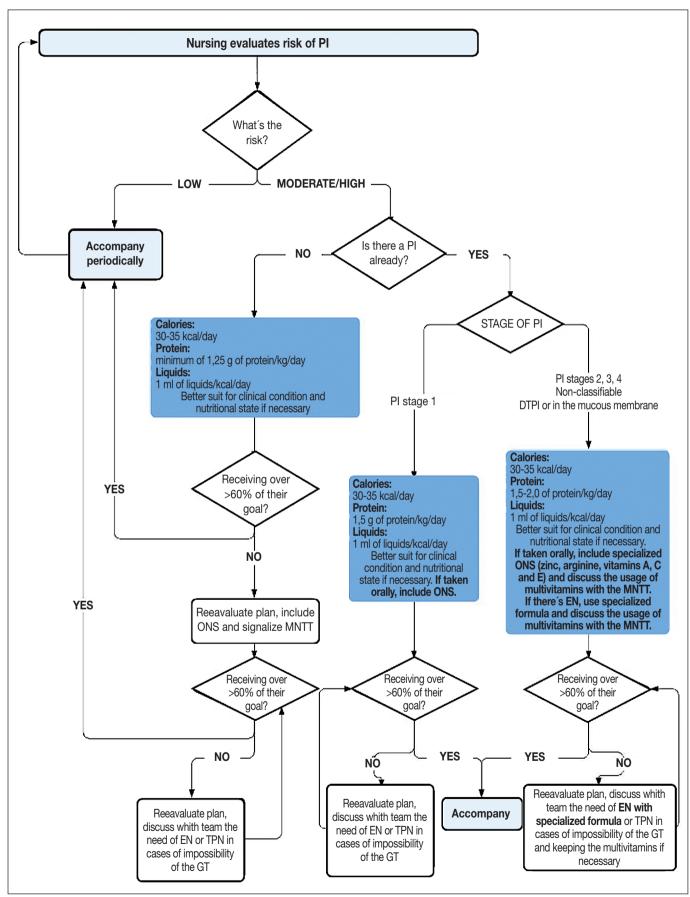


Figure 4 - Protocol for the evaluation and treatment of pressure injury for stable patients.

Source: adapted from MTNT in Practice HIAE⁷⁶; EPUAP/NPIAP/PAN PACIFIC⁸; BRASPEN aging guideline⁸³.

6- Notify skin changes and communicate clearly to the team. This action is part of integrated care

Complete documentation of PI is essential and nurses play a central role in this process. However, documentation by other health professionals is also important. Studies have shown that incomplete and incorrect records can threaten the validity of treatment and the quality-of-care provided⁸⁴.

In view of the need to improve clinical and care practice by providing professionals with security for the process of evaluating Pls, several authors have proposed instruments to measure wounds⁸⁵. The initial evaluation of the patient with Pl should be comprehensive and include a complete health history, physical examination focused on nutritional status, pain, risk assessment of developing new lesions, quality of life, functional capacity, available resources and support, and ability to adhere to the proposed prevention and treatment plan. Laboratory tests and radiological images may also be necessary during the evaluation of a lesion⁸⁶.

Currently, the use of an electronic system can be considered an important aid in documentation by the interprofessional team, with the objective of keeping all information in an easily accessible place, allowing strategies such as a reminder system, decision support tools in clinical conduct, evaluation and more accurate documentation of Pls⁸⁷.

Practical approach:

- The evaluation and registration of the PI must include⁸⁷:
- The anatomical site;
- The staging of the lesion;
- The size and surface area;
- The types of fabrics present and coloring;
- The condition of the perilesional skin;
- The edge and margin;
- Presence of epibole and tunneling;
- Type and amount of exudate;
- Presence of odor.

Wound pain assessment should be included in all PI assessments. In black-skinned patients, priority should be given to the presence of heat in the skin, increased sensitivity, and changes in perilesional tissue thickness⁸⁸. If PI does not show signs of healing within two weeks, comprehensively reassess the patient⁸⁹. This reassessment of the lesion consists of:

- 1. Evaluate at the beginning and at least once a week to monitor healing;
- 2. Consider the need for wound bed biopsy when healing does not progress;

- 3. Use a uniform and consistent method to measure PI size:
- 4. Calculate the wound area (should reduce surface area by 40% to 50% within four weeks of starting treatment) and scarring predictive factor.

For a hypothetical practical example of how this evaluation should be described, it could be written down as: patient presents in the region of the right calcaneus PI stage 4, measuring 4.5 x 4.0 cm. In its extension, it has 40% necrotic tissue and 60% granulation. Perilesional region with a hyperemic halo of approximately 2.0 cm from the edge of the lesion. Irregular borders and detachment of approximately 1.0 cm in the cephalo-podalic position between 3 pm and 6 pm. Absence of tunneling. Exudate in moderate quantity of piobloody and odorless appearance.

7- Enfold all key healthcare stakeholders, caregivers, family members, and patients in the integrated approach to preventive care and individualized treatment of PI.

One of the fundamental actions to reduce the incidence of PL is to raise the awareness of patients and family members in the care process, as active subjects, main responsible and holders of knowledge about the body. Therefore, they can serve as a source of control, autonomy, values, and decision-making, which can make the safe practices established by the institution to combat injuries more effective⁹⁰.

The care process requires decision-making based on scientific knowledge centered on the patient's individuality, requiring continuing education, both in hospitals and in long-term care institutions^{1,91}. This continued education should base its objectives on the training of the health team with an evidence-based practice⁹².

For this, the multidisciplinary team, the patient, family members and caregivers must be aligned on preventive conducts. Each agent in the process must jointly set goals that ensure that patients at risk of PI are positively benefited^{90,93}.

Multimodal continuing education shows an increase in PI knowledge scores, an improvement in team competence, an increase in the use of risk assessment instruments, and a reduction in the prevalence of injuries⁹⁴⁻⁹⁶. It is ideal that these programs include theoretical and practical parts with the association of various methods within the educational process. They should be innovative, with active strategies such as: didactic presentations, workshops, practical simulations, case studies, use of specific applications, bedside discussion of cases, and reading materials ⁹⁷⁻¹⁰⁰.

In this sense, in addition to the various methods used, it is important to adapt the training to the target audience, paying attention to verbal expression, level of education, primary language, and sensory deficiencies to involve individuals and engage them in the learning process¹⁰¹.

A very important professional in this gear is the nurse. However, it is known that not all professionals have access to continuing education programs on PI. In this context, recent meta-analyses have shown that continuing education significantly improves nurses' knowledge and competencies on preventive measures and care with PI^{49,102,103}.

On the other hand, considering the arduous routine in the hospital setting, many barriers hinder the care and prevention of PI, some of which¹⁰⁴ are: 1) little knowledge and beliefs about the consequences of PI (nature, source, timing, and taboo); 2) lack of clarification of the role to be played by each member (who does what, conflicting councils and divergences); 3) lack of motivation and priorities (competing needs for self-care and the caregiver's physical capacity); 4) poor memory (forgetting to reposition in bed); 5) low emotion (caregiver exhaustion and isolation, conflict in the caregiver's role, and patient feelings) and 6) inadequate work environment (scarcity of human resources and equipment).

In this way, several education and awareness programs have been created and evaluated on their effectiveness. One of them is the Shanley Pressure Ulcer Prevention Program (SPUPP)¹⁰⁵, which observed positive impacts on the participants' knowledge scores regarding the prevention of PI. There was an improvement in the patient's level of knowledge, which allowed them to take proactive action in the prevention of PI.

Undoubtedly, every hospital unit must ensure that the team, patients, family members and caregivers are aware of the negative impacts of PI. This results in improved patient quality of life, reduced hospitalizations, morbidity and mortality, and hospital costs. To this end, protocols on prevention and care must be developed and routinely updated 106.

Every team must be aware of the activity and actions that each professional must perform to achieve the preventive objective. It is important to understand, systematically, importance of medical care, nursing care, and nutritionists ¹⁰⁷. This care should be part of the daily conduct of patients at risk of PI during the hospitalization time and after discharge home, being part of a well-structured discharge planning.

The objective of adequate and efficient discharge planning is to improve the patient's quality of life, ensuring continuity of care and reducing the rate of readmissions and/or unplanned complications, which can reduce the financial burden on the health system¹⁰⁸. It is part of assessing the individual's selfcare capacity, as well as the ability and knowledge of their caregiver⁸.

Establishing a structured hospital discharge plan with understandable tools for patient education will improve the

multidisciplinary team's ability to ensure the effectiveness of the individual's educational process¹⁰⁹. Kim et al.¹¹⁰ developed an education program focused on PI prevention with a focus on self-care for eight weeks. As a result, a greater willingness to adopt preventive and self-care behaviors, as well as an increase in knowledge, was observed in the group that was part of the program. In addition, one patient in the control group presented with a new PI during the study¹¹⁴.

In another study, the use of telenursing through family education interventions via messaging apps for 30 days after hospital discharge was shown to be effective, with a lower Pressure Ulcer Scale for Healing (PUSH) score 30 days after discharge in the group that received telenursing¹¹¹.

Another important strategy is the involvement of health managers and administrators in institutional policies related to the prevention, treatment, and management of Pl. These include:

- Complying with current legislation regarding actions for patient safety, establishing the Patient Safety Center (PSC) and supporting its actions in the institution;
- Strengthening the institutional patient safety policy, providing technical, financial, administrative, and human resources for the appropriate surveillance, monitoring, prevention and mitigation of the incidence of PI;
- Support the actions established and directed to the prevention and minimization of PI risks;
- Support the promotion of a safety culture in the institution, encouraging the notification of incidents related to PI, as well as encouraging learning about failures and instituting measures to prevent these events in health services;
- Ensure continuing education activities for professionals to improve the quality of care provided.

Practical approach:

An example of five key steps to implement an effective continuing education program to prevent PI include^{8,95,97,98,103,114-112}:

1. Assess the need for continuing education

Before developing an education program, it is essential to assess the educational needs of the team. This can be done through questionnaires, interviews, and analysis of current practices. Understanding the gaps in knowledge and skills will allow you to create a targeted and effective program.

2. Develop educational content

Based on the needs assessment, develop educational content that addresses the key aspects of PI prevention. This should include:

- Skin conditions: hydration, fragility, presence of wounds
- Risk factors for PI: age, malnutrition, related diseases
- Techniques for assessment and skin care: structured and validated scales
- Preventive interventions, such as changes in position, use of support surfaces, and skin care
- Care protocols with evidence-based practices

3. Create varied teaching methods

Using a variety of teaching methods can help engage different learning styles. Consider including:

- Face-to-face sessions and hands-on workshops
- Interactive e-learning modules
- Hands-on demonstrations and simulations
- Case studies and group discussions
- Reading materials and instructional videos

4. Develop ongoing training with updates

- Continuing education should be an ongoing process.
 Plan regular training sessions to review and refresh staff knowledge. This may include:
- Quarterly or bi-annual updates on new practices
- Refresher sessions to reinforce fundamental knowledge
- Ongoing hands-on training to ensure competence in specific skills

5. Monitor and evaluate the continuing education program

To ensure the effectiveness of the continuing education program, it is crucial to continuously monitor and evaluate its impact. This can be done through:

- Staff performance evaluations before and after training
- Monitoring of PI rates at the institution
- Regular feedback from participants on the content and effectiveness of the trainings
- Program adjustments based on assessment results and feedback received

Considering a multidisciplinary home care plan for an individual in the presence of a PI, it should contain the following topics:

- Etiology of PI including skin anatomy and risk factors for development;
- Dietary advice;
- Recommendations for healthy habits;
- Approach to smoking and alcohol consumption;

- Personal hygiene;
- Strategies for redistributing pressure when sitting and lying down:
- Use of suitable mattresses and pillows;
- Use of appropriate clothing and footwear;
- Inspection and skin care;
- Wound care;
- Exercise plan according to the individual's functionality.

In the patient's educational process, it is suggested 76,78,115-117:

- Recognition of possible barriers to learning and communication: visual, auditory, speech, and others (cultural, religious, psychomotor, emotional);
- Identification of the person involved in the educational process for engagement and empowerment (patient, relative, caregiver or home care team);
- Start the orientation process during the hospitalization period and as early as possible;
- Define the best teaching method according to the level of understanding of the patient and those involved: demonstration, audiovisual, verbal, or brochure;
- Assess the understanding of the guided individual through verbalization, refusal, demonstrative ability, or non-understanding;
- Identify the need for strengthening the guidelines;
- Detect whether the objective was achieved or not, performing the teach back (confirmation if there was an understanding, asking the involved person to explain what was oriented) to assess the understanding of the discharge instructions and the ability to perform self-care;

It is extremely important that the multidisciplinary team maintains the continuity of treatment through teleconsultation, outpatient clinic, or home visit.

REFERÊNCIAS

- 1. Li Z, Lin F, Thalib L, Chaboyer W. Global prevalence and incidence of pressure injuries in hospitalised adult patients: a systematic review and meta-analysis. Int J Nurs Stud. 2020;105:103546.
- Canicoba M, Barrita R, Patané J. Primer consenso sobre prevención, categorización y tratamiento de las úlceras por presión (PRICUPP). Diaeta (B. Aires). 2018;36(162):8-10. Spanish.
- 3. Murphree RW. Impairments in skin integrity. Nurs Clin North Am. 2017;52(3):405-17.
- Agência Nacional de Vigilância Sanitária. Boletim Segurança do Paciente e Qualidade em Serviços de Saúde nº 29: Incidentes Relacionados à Assistência à Saúde - 2014 a 2022 [Internet]. 2022 [citado 21 Out 2025]. Disponível em: https://www.gov. br/anvisa/pt-br/centraisdeconteudo/publicacoes/servicosde-

- saude/boletins-e-relatorios-das-notificacoes-de-iras-e-outros-eventos-adversos-1/BR_2014__2022.pdf. Portuguese.
- 5. Burston A, Miles SJ, Fulbrook P. Patient and carer experience of living with a pressure injury: a meta-synthesis of qualitative studies. J Clin Nurs. 2023;32(13-14):3233-47.
- Vanaki Z, Mohammadi E, Hosseinzadeh K, Ahadinezhad B, Rafiei H. Prevalence of pressure Injury among stroke patients in and out of healthcare settings: a systematic review and metaanalysis. Hom Healthc Now. 2023;41(3):158-54.
- Grada A, Phillips TJ. Nutrition and cutaneous wound healing. Clin Dermatol. 2022;40(2):103-13.
- 8. National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel, Pan Pacific Pressure Injury Alliance. Prevention and treatment of pressure ulcers: quick reference guide. Cambridge Media: Osborne Park; 2019.
- Souza MFC, Zanei SSV, Whitaker IY. Risco de lesão por pressão em UTI: adaptação transcultural e confiabilidade da EVARUCI. Acta Paul Enferm. 2018;31(2):201-8. Portuguese.
- 10. Braden B, Bergstrom N. A conceptual schema for study of the etiology of pressure sores. Rehabil Nurs. 1987;12(1):8-12.
- Sousa Cristina Silva. Tradução, adaptação cultural e validação da Munro Scale para português do Brasil. Reme Rev Min Enferm. 2021;25:e1404. Portuguese.
- 12. Maia ACAR, Pellegrino DMS, Blanes L, Dini GM, Ferreira LM. Tradução para a língua portuguesa e validação da escala de Braden Q para avaliar o risco de úlcera por pressão em crianças. Rev Paul Pediatr. 2011;29(3):405–14. Portuguese.
- 13. Chiari P, Forni C, Guberti M, Gazineo D, Ronzoni S, D'Alessandro F. Predictive factors for pressure ulcers in an older adult population hospitalized for hip fractures: a prognostic cohort study. PLoS One. 2017;12(1):e0169909.
- 14. Ranzani OT, Simpson ES, Japiassu AM, Noritomi DT, Amil Critical Care G. The challenge of predicting pressure ulcers in critically ill patients. A multicenter cohort study. Ann Am Thorac Soc. 2016;13(10):1775-83.
- Nassaji M, Askari Z, Ghorbani R. Cigarette smoking and risk of pressure ulcer in adult intensive care unit patients. Int J Nurs Pract. 2014;20(4):418-23.
- Ham HWW, Schoonhoven LL, Schuurmans MM, Leenen LLPH. Pressure ulcer development in trauma patients with suspected spinal injury; the influence of risk factors present in the emergency department. Int Emerg Nurs. 2017;30:13-9.
- Sternal D, Wilczyński K, Szewieczek J. Pressure ulcers in palliative ward patients: hyponatremia and low blood pressure as indicators of risk. Clin Interv Aging. 2016;12: 37-44.
- 18. Cox J, Roche S. Vasopressors and development of pressure ulcers in adult critical care patients. Am J Crit Care. 2015;24(6):501-10.
- 19. Bly D, Schallom M, Sona C, Klinkenberg D. A model of pressure, oxygenation, and perfusion risk factors for pressure ulcers in the intensive care unit. Am J Crit Care. 2016;25(2):156-64.
- Joseph C, Wikmar LN. Prevalence of secondary medical complications and risk factors for pressure ulcers after traumatic spinal cord injury during acute care in South Africa. Spinal Cord. 2016;54(7):535-9.
- 21. Brienza D, Krishnan S, Karg P, Sowa G, Allegretti AL. Predictors of pressure ulcer incidence following traumatic spinal cord injury: a secondary analysis of a prospective longitudinal study. Spinal Cord, 2017;56(1):28-34.
- 22. Chaboyer WP, Thalib L, Harbeck EL, Coyer FM, Blot S, Bull CF, et al. Incidence and prevalence of pressure injuries in adult intensive care patients: a systematic review and meta-analysis. Crit Care Med. 2018;46(11):e1074-81.
- 23. Tayyib N, Coyer F, Lewis P. Saudi Arabian adult intensive care unit pressure ulcer incidence and risk factors: a prospective cohort study. Int Wound J. 2016;13(5):912-9.

- 24. Forni C, D'Alessandro F, Genco R, Mini S, Notarnicola T, Vitulli A, et al. Prospective prognostic cohort study of pressure injuries in older adult patients with hip fractures. Adv Skin Wound Care. 2018;31(5):218-24.
- 25. Anderson C, Bekele Z, Qiu Y, Tschannen D, Dinov ID. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. BMC Med Inform Decis Mak. 2021;21(1):253.
- Lau CH, Yu KH, Yip TF, Luk LYF, Wai AKC, Sit TY, et al. An artificial intelligence-enabled smartphone app for real-time pressure injury assessment. Front Med Technol. 2022;4:905074.
- 27. Alderden J, Pepper GA, Wilson A, Whitney JD, Richardson S, Butcher R, et al. Predicting pressure injury in critical care patients: a machine-learning model. Am J Crit Care. 2018;27(6):461-8.
- 28. Brasil. Notatécnica GVIMS/GGTES/Anvisan°05/2023. Práticas de segurança do paciente em serviços de saúde: prevenção de lesões por pressão. Agência Nacional de Vigilância Sanitária: Brasília; 2023. Portuguese.
- Herdman TH, Kamitsuru S, Lopes CT. Diagnóstico de enfermagem da NANDA-I: definições e classificações 2021-2023.
 Porto Alegre: Artmed; 2021. Portuguese.
- 30. Mendonça PK, Loureiro MDR, Frota OP, Souza AS. Prevenção de lesão por pressão: ações prescritas por enfermeiros de centros de terapia intensiva. Texto Contexto Enferm. 2018;27(4):e4610017. Portuguese.
- 31. National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel, Pan Pacific Pressure Injury Alliance. Prevention and treatment of pressure ulcers: quick reference guide. Cambridge Media: Osborne Park; 2025.
- 32. National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel, Pan Pacific Pressure Injury Alliance. Prevention and treatment of pressure ulcers: quick reference guide. Cambridge Media: Osborne Park; 2014.
- 33. Gorecki C, Brown JM, Nelson EA, Briggs M, Schoonhoven L, Dealey C, et al. Impact of pressure ulcers on quality of life in older patients: a systematic review. J Am Griatr Soc. 2009;57(7):1175-83.
- 34. Holloway S, Jones V. The importance of skin care and assessment. Br J Nurs. 2005;14(22):1172-6.
- 35. Associação Brasileira de Estomaterapia, Associação Brasileira de Enfermagem em Dermatologia. Consenso NPUAP 2016 classificação das lesões por pressão adaptado culturalmente para o Brasil. São Paulo: Associação Brasileira de Estomaterapia; 2016. Portuguese.
- Edsberg LE, Black JM, Goldberg M, McNichol L, Moore L, Sieggreen M. Revised national pressure ulcer advisory panel pressure injury staging system. J Wound Ostomy Continence Nurs. 2016;43(6):585–97.
- 37. Schallom M, Cracchiolo L, Falker A, Foster J, Hager J, Morehouse T, et al. Pressure ulcer incidence in patients wearing nasal-oral versus full-face noninvasive ventilation masks. Am J Crit Care. 2015;24(4):349–56; quiz 357.
- 38. Chew HSJ, Thiara E, Lopez V, Shorey S. Turning frequency in adult bedridden patients to prevent hospital-acquired pressure ulcer: a scoping review. Int Wound J. 2018;15(2): 225-36.
- 39. Pisani L, Carlucci A, Nava S. Interfaces for noninvasive mechanical ventilation: technical aspects and efficiency. Minerva Anestesiol. 2012;78(10):1154–61.
- 40. Institute for Healthcare Improvement. How-to guide: prevent pressure ulcers. Cambridge: Institute for Healthcare Improvement; 2011.

- 41. Brindle CT, Malhotra R, O'Rourke S, Currie L, Chadwik D, Falls P, et al. Turning and repositioning the critically ill patient with hemodynamic instability: a literature review and consensus recommendations. J Wound Ostomy Continence Nurs. 2013;40(3):254-67.
- 42. Smit I, Harrison L, Letzkus L, Quatrara B. What factors are associated with the development of pressure ulcers in a medical intensive care unit? Dimens Crit Care Nur. 2016; 35(1):37-41.
- 43. Munckton K, Ho KM, Dobb GJ, Das-Gupta M, Webb SA. The pressure effects of facemasks during noninvasive ventilation: a volunteer study. Anaesthesia. 2007;62(11):1126–31.
- 44. Souza MC, Loureiro MDR, Batiston AP. Organizational culture: prevention, treatment, and risk management of pressure injury. Rev Bras Enferm. 2020;73(3):e20180510.
- 45. Guideline quick view: pressure injury prevention. AORN J. 2022;116(2):205-8.
- 46. Silva SAM, Pires PS, Macedo MP, Oliveira LS, Batista JET, Amaral JM. Lesão por pressão: incidência em unidades críticas de um hospital regional. ESTIMA. 2018;16:e4318. Portuguese.
- 47. Gamston J. Pressure induced skin and soft tissue injury in the emergency department. Emerg Med J. 2019;36(10):631-4.
- 48. Santos LRDSD, Santos JCD. Proposta de um bundle para prevenção das complicações causadas pela síndrome do imobilismo após prolongado período de internação em unidades de terapia intensiva [monografia]. Ariquemes: Faculdade de Educação e Meio Ambiente; 2021. Portuguese.
- 49. Kim G, Park M, Kim K. The effect of pressure injury training for nurses: a systematic review and meta-analysis. Adv Skin Wound Care. 2020;33(3):1-11.
- Matos LBN, Piovacari SMF, Ferrer R, Alves JTM, Assis T, Brandão ACMAG, et al. Campanha Diga Não à Lesão por Pressão. BRASPEN J. 2020;35(Supl 1):2-32. Portuguese.
- Munoz N, Posthauer ME. Nutrition strategies for pressure injury management: implementing the 2019 International Clinical Practice Guideline. Nutr Clin Pract. 2022;37(3): 567-82.
- Eglseer D, Hödl M, Lohrmann C. Nutritional management of older hospitalised patients with pressure injuries. Int Wound J. 2019;16(1):226-32.
- Lyder CH, Preston J, Grady JN, Scinto J, Allman R, Bergstrom N, et al. Quality of care for hospitalized Medicare patients at risk for pressure ulcers. Arch Intern Med. 2001;161(12): 1549-54.
- 54. Serpa LF, Oliveira AS, Nogueira PC, Santos VLCG. Risk for undernutrition and development of pressure injury in hospitalised patients in Brazil: multicentre prospective cohort study. Int Wound J. 2020;17(4):916-24.
- 55. Stephenson SS, Guligowska A, Cieślak-Skubel A, Wójcik A, Kravchenko G, Kostka T, et al. The relationship between nutritional risk and the most common chronic diseases in hospitalized geriatric population from central Poland. Nutrients. 2023;15(7):1612.
- 56. Chen B, Yang Y, Cai F, Zhu C, Lin S, Huang P, et al. Nutritional status as a predictor of the incidence of pressure injury in adults: a systematic review and meta-analysis. J Tissue Viability. 2023;32(3):339-48.
- 57. Meehan A, Loose C, Bell J, Partridge J, Nelson J, Goates S. Health system quality improvement: impact of prompt nutrition care on patient outcomes and health care costs. J Nurs Care Qual. 2016;31(3):217-23.
- Rubenstein LZ, Harker JO, Salvà A, Guigoz Y, Vellas B. Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci. 2001;56(6):M366-72.

- Skipper A, Ferguson M, Thompson K, Castellanos VH, Porcari J. Nutrition screening tools: an analysis of the evidence. JPEN J Parenter Enteral Nutr. 2012;36(3):292-8.
- Wound, Ostomy and Continence Nurses Society-Wound Guidelines Task Force. WOCN 2016 guideline for prevention and management of pressure injuries (ulcers): an executive summary. J Wound Ostomy Continence Nurs. 2017;44(3):241–46.
- 61. Yatabe MS, Taguchi F, Ishida, Sato A, Kameda T, Ueno S, et al. Mini nutritional assessment as a useful method of predicting the development of pressure ulcers in elderly inpatients. J Am Geriatr Soc. 2013;61(10):1698-704.
- 62. Horn SD, Bender SA, Ferguson ML, Smout RJ, Bergstrom N, Taler G, et al. The National Pressure Ulcer Long-Term Care Study: pressure ulcer development in long-term care residents. J Am Geriatr Soc. 2004;52(3):359-367.
- 63. Gonzalez EDL, Mendivil LLL, Garza DPS, Hermosillo HG, Chavez JHM, Corona RP. Low handgrip strength is associated with a higher incidence of pressure ulcers in hip fractured patients. Acta Orthop Belg. 2018;84(3):284-291.
- 64. Sancho A, Albiol R, Mach N. Relationship between nutritional status and the risk of having pressure ulcers in patients included in a home care program. Atencion Primaria. 2012;44(10):586-94.
- 65. Dalapicola MM. A importância do suporte nutricional em pacientes portadores de úlcera de pressão. Cad Saúde Desenv. 2013;2(2):76-89.
- 66. Ghaly P, Iliopoulos J, Ahmad M. The role of nutrition in wound healing: an overview. Br J Nurs 2021; 30(5):38-42.
- 67. Little MO. Nutrition and skin ulcers. Curr Opin Clin Nutr Metab Care. 2013;16(1):39-49.
- 68. Campos ACL, Groth AK, Branco AB. Assessment and nutritional aspects of wound healing. Curr Opin Clin Nutr Metab Care. 2008;11(3):281-8.
- 69. National Health and Medical Research Council, Australian Government Department of Health and Ageing, New Zealand Ministry of Health. Nutrient Reference Values for Australia and New Zealand. Canberra: Australian Government; 2017.
- 70. Volkert D, Beck AM, Cederholm T, Cruz-Jentoft A, Goisser S, Hooper L, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr. 2019;38:10-47.
- 71. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159-211.
- Mueller CM. The ASPEN Adult Nutrition Support Core Curriculum. Silver Spring: American Society for Enteral and Parenteral Nutrition; 2017.
- 73. Alvarez OM, Meehan M, Ennis WJ, Thomas DR, Ferris FD, Kennedy KL, et al. Chronic wounds: palliative management for the frail population. Wounds. 2002;14(8):5S-27S.
- Tatucu-Babet OA, Ridley EJ. Under pressure: nutrition and pressure injury development in critical illness. Intensive Crit Care Nurs. 2021;62:102960.
- 75. Wu G, Bazer FW, Burghardt RC, Jonson GA, Kim SW, Knabe DA, et al. Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids. 2011;40:1053-63.
- 76. Piovacari SMF, Saito MLFS, Canero TR. Desospitalização: previsibilidade, visibilidade e planejamento para a alta hospitalar. In: Piovacari SMF, Toledo DO, Figueiredo EJA. Equipe multiprofissional de terapia nutricional: EMTN em prática. Rio de Janeiro: Atheneu, 2017. Portuguese.
- 77. Castro MG, Ribeiro PC, Souza IAO, Cunha HFR, Silva MHN, Rocha EEM, et al. Diretriz brasileira de terapia nutricional no paciente grave. BRASPEN J. 2018;33(Supl 1):2-36. Portuguese.

- 78. Toledo DO, Piovacari SMF, Horie LM, Matos LBN, Castro MG, Ceniccola GD, et al. Campanha "Diga não à desnutrição": 11 passos importantes para combater a desnutrição hospitalar. BRASPEN J. 2018;33(1):86-100. Portuguese.
- 79. Castro MG, Ribeiro PC, Zambelli CMSF, Falcão H, Silva Jr JM, Alves JTM et al. Posicionamento BRASPEN sobre o uso de micronutrientes via parenteral em adultos. BRASPEN J. 2021;36(1):3-19. Portuguese.
- Cenicolla GD e Scacchetti T. Indicadores de Qualidade em Terapia Nutricional in: Piovacari SMF. Nutrição Hospitalar. Rio de Janeiro: Atheneu, 2021. Portuguese.
- 81. Castro M, Pompilio CE. Protocolos de terapia nutricional em unidades de terapia intensiva. In: Toledo D, Castro M. Terapia nutricional em UTI. Rio de Janeiro: Rubio; 2015. Portuguese.
- 82. Associação Brasileira de Nutrição. Manual orientativo. Sistematização no cuidado de nutrição. São Paulo: Associação Brasileira de Nutrição; 2014. Portuguese.
- Gonçalves TJ, Horie LM, Gonçalves SEAB, Bacchi MK, Bailer MC, Barbosa-Silva TG, et al. Diretriz BRASPEN de terapia nutricional no envelhecimento. BRASPEN J. 2019;34(supl 3):2-58. Portuguese.
- 84. Hart S, Bergquist S, Gajewski B, Dunton N. Reliability testing of the National Database of Nursing Quality Indicators pressure ulcer indicator. J Nurs Care Qual. 2006;21(3):256-65.
- 85. Gabison S, McGillivray C, Hitzig SL, Nussbaum E. A study of the utility and equivalency of 2 methods of wound measurement: digitized tracing versus digital photography. Adv Skin Wound Care. 2015;28(6):252-8.
- 86. Langemo D, Spahn J, Spahn T, Pinnamaneni VC. Comparison of standardized clinical evaluation of wounds using ruler length by width and Scout length by width measure and Scout perimeter trace. Adv Skin Wound Care. 2015;28(3): 116-21
- 87. Lin F, Wu Z, Song B, Coyer F, Chaboyer W. The effectiveness of multicomponent pressure injury prevention programs in adult intensive care patients: a systematic review. Int J Nurs Stud. 2020;102:103483.
- 88. Bliss DZ, Gurvich O, Savik K, Eberly LE, Harms S, Mueller C, et al. Racial and ethnic disparities in the healing of pressure ulcers present at nursing home admission. Arch Gerontol Geriatr. 2017;72:187-94.
- 89. Choi EP, Chin WY, Wan EY, Lam CL. Evaluation of the internal and external responsiveness of the Pressure Ulcer Scale for Healing (PUSH) tool for assessing acute and chronic wounds. J Adv Nurs. 2016;72(5):1134-43.
- Viana I, Aguiar FC, Rios SO, et al. Direitos do Paciente, Comunicação e a Obrigação de Informar. Revista Baiana de Saúde Pública. 2016;40(1):182-201.
- 91. Moore Z. Improving pressure ulcer prevention through education. Nurs Stand. 2001;16(6):64-8,70.
- 92. Gaspar S, Peralta M, Marques A, Budri A, Matos MG. Effectiveness on hospital-acquired pressure ulcers prevention: a systematic review. Int Wound J. 2019;16(5):1087-1102.
- 93. Porter-Armstrong AP, Moore ZE, Bradbury I, McDonough S. Education of healthcare professionals for preventing pressure ulcers. Cochrane Database Syst Rev. 2018;5:CD011620.
- 94. Rintala DH, Garber SL, Friedman JD, Holmes SA. Preventing recurrent pressure ulcers in veterans with spinal cord injury: impact of a structured education and follow-up intervention. Arch Phys Med Rehabil. 2008;89(8):1429-41.
- Tescher A, Deppisch M, Munro C, Jorgensen V, Cuddigan J. Perioperative pressure injury prevention: National Pressure Injury Advisory Panel root cause analysis toolkit 3.0. J Wound Care. 2022;31(Sup12):S4-S9.

- 96. Garber SL, Rintala DH, Holmes SA, Rodriguez GP, Friedman J. A structured educational model to improve pressure ulcer prevention knowledge in veterans with spinal cord dysfunction. J Rehabil Res Dev. 2002;39(5):575-88.
- 97. Cuddigan J, Haesler E, Moore Z, Carville K, Kottner J. Development, dissemination and evaluation of a smartphone-based app for pressure ulcer/injury prevention and treatment for use at the bedside. J Wound Care. 2022;31(Sup12):S29-S39.
- 98. Haesler E, Cuddigan J, Carville K, Moore Z, Kottner J, Ayello EA, et al. Protocol for the development of the fourth edition of the prevention and treatment of pressure ulcers/injuries: clinical practice guideline using GRADE methods. Adv Skin Wound Care. 2024;37(3):136-46.
- 99. Yap TL, Kennerly SM, Horn SD, Bergstrom N, Datta S, Colon-Emeric C. TEAM-UP for quality: a cluster randomized controlled trial protocol focused on preventing pressure ulcers through repositioning frequency and precipitating factors. BMC Geriatr. 2018;18(1):54.
- 100.Yap TL, Horn SD, Sharkey PD, Zheng T, Bergstrom N, Colon-Emeric C, et al. Effect of varying repositioning frequency on pressure injury prevention in nursing home residents: TEAM-UP trial results. Adv Skin Wound Care. 2022;35(6):315-25.
- 101.Chaboyer W, Harbeck E, Bucknall T, McInnes E, Thalib L, Whitty J, et al. Initial psychometric testing and validation of the Patient Participation in Pressure Injury Prevention scale. J Adv Nurs. 2017;73(9):2237-47.
- 102. Yuan L, Ye M, Yang T. Effect of educational training on nurses' ability to care for patients with pressure injuries: a meta-analysis. Adv Skin Wound Care. 2022;35(11):1-6.
- 103. Wu J, Wang B, Zhu L, Jia X. Nurses' knowledge on pressure ulcer prevention: an updated systematic review and meta-analysis based on the Pressure Ulcer Knowledge Assessment Tool. Front Public Health. 2022;10:964680.
- 104.Roddis J, Dyson J, Woodhouse M, Devrell A, Oakley K, Cowdell F. Barriers and facilitators to pressure ulcer prevention behaviours by older people living in their own homes and their lay carers: a qualitative study. BMJ Open. 2024;14(3): e080398.
- 105.Shanley E, Patton D, Avsar P, O'Connor T, Nugent L, Moore Z. The impact of the Shanley Pressure Ulcer Prevention Programme on older persons' knowledge of, and attitudes and behaviours towards, pressure ulcer prevention. Int Wound J. 2022;19(4):754-764.
- 106.Kottner J, Cuddigan J, Carville K, Balzer K, Berlowitz D, Law S, et al. Prevention and treatment of pressure ulcers/ injuries: the protocol for the second update of the international Clinical Practice Guideline 2019. J Tissue Viability. 2019;28(2):51-58.
- 107.Munoz N, Posthauer ME, Cereda E, Schols JMGA, Haesler E. The role of nutrition for pressure injury prevention and healing: the 2019 international clinical practice guideline recommendations. Adv Skin Wound Care. 2020;33(3):123-136.
- 108.Patel PR, Bechmann S. Discharge Planning. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2025.
- 109.Seyedin H, Goharinezhad S, Vatankhah S, Azmal M. Patient education process in teaching hospitals of Tehran University of Medical Sciences. Med J Islam Repub Iran. 2015;29:220.
- 110.Kim JY, Cho E. Evaluation of a self-efficacy enhancement program to prevent pressure ulcers in patients with a spinal cord injury. Jpn J Nurs Sci. 2017;14(1):76-86.
- 111.Fashaei F, Deldar K, Froutan R, Mazlom SR. Family-centred empowerment using telenursing on pressure injury incidence in post-discharge stroke patients. J Wound Care. 2024;33(1):51-9.

- 112.Gould LJ, Bohn G, Bryant R, Paine T, Couch K, Cowan L, et al. Pressure ulcer summit 2018: an interdisciplinary approach to improve our understanding of the risk of pressure-induced tissue damage. Wound Repair Regen. 2019;27(5):497-508.
- 113.Kottner J, El Genedy-Kalyoncu M. The uptake of the international pressure ulcer/injury prevention and treatment guidelines in the scientific literature: a systematic analysis of two major citation databases. J Tissue Viability. 2022;31(4):763-67.
- 114. Haesler E, Pittman J, Cuddigan J, Law S, Chang YY, Balzer K, et al. An exploration of the perspectives of individuals and their caregivers on pressure ulcer/injury prevention and management to inform the development of a clinical guideline. J Tissue Viability. 2022;31(1):1-10.
- 115. Weintraub B, Jensen K, Colby K. Improving hospitalwide patient flow at Northwest Community Hospital In: Joint Commission Resources. Managing patient flow in hospitals: strategies and solutions. Illinois: JCR Department of Publications; 2010.
- 116.Rutherford P, Nielsen GA, Taylor J, Bradke P, Coleman E. How to guide: improving transitions from the hospital to community settings to reduce avoidable rehospitalizations. Cambridge: Institute for Healthcare Improvement; 2013.
- 117. Hoyer EH, Brotman DJ, Apfel A, Leung C, Boonyasai RT, Richardson M, et al. Improving outcomes after hospitalization: a prospective observational multicenter evaluation of care coordination strategies for reducing 30-day readmissions to Maryland hospitals. J Gen Intern Med. 2018;33(5):621-7.

Study location: Brazilian Society of Parenteral and Enteral Nutrition (SBNPE/BRASPEN), São Paulo, SP, Brazil.

Conflict of interest: The authors declare there are none.